Có một tập hợp các con số rất đặc biệt, được gọi là các hằng số cơ bản của tự nhiên, không thể giải thích được. Chúng đến từ đâu? Tìm hiểu xem chúng có thực sự là hằng số hay không chính là chìa khóa để mở khóa bí ẩn dai dẳng này.
Vật lý là mô tả toán học về tự nhiên. Chúng ta sử dụng các mô hình, phương trình và công thức để mô tả cách các hệ thống hoạt động và dự đoán cách chúng sẽ hoạt động trong tương lai. Cách tiếp cận này đã chứng minh được sự thành công to lớn, giải thích mọi thứ từ hành vi của các hạt hạ nguyên tử đến sự tiến hóa của toàn bộ vũ trụ.
Nhưng có những khía cạnh của các phương trình này thách thức sự giải thích. Bất cứ khi nào chúng ta cố gắng lấy một mô hình giả thuyết và kết nối nó với thế giới thực, chúng ta phải đưa ra các con số đặc biệt. Những con số này nắm bắt một số khía cạnh của tự nhiên nằm ngoài các phương trình của chúng ta. Ví dụ, nếu tôi muốn dự đoán chuyển động của một quả bóng được ném, tôi phải biết lực hấp dẫn mạnh đến mức nào. Nhưng không có lý thuyết nào giải thích được tại sao lực hấp dẫn lại có sức mạnh như vậy. Chúng ta chỉ có thể đo giá trị đó một cách độc lập và đưa nó vào các phương trình.
Trong nhiều thập kỷ, các nhà vật lý đã biên soạn nhiều danh sách các hằng số cơ bản quan trọng nhất. Nhìn chung, có hơn hai chục hằng số. Chúng mô tả những thứ như cường độ của bốn lực trong tự nhiên, khối lượng của các hạt cơ bản và các khía cạnh của không-thời gian, như tốc độ ánh sáng.
Chúng ta không biết những con số này đến từ đâu và tại sao chúng lại có các giá trị như vậy. Một cách để nghiên cứu chúng là tìm hiểu xem chúng có thực sự là hằng số hay không. Nếu bất kỳ con số nào trong số này thay đổi theo thời gian hoặc trong không gian, thì đó sẽ là một manh mối quan trọng. Các biến thể trong các hằng số sẽ cho chúng ta biết rằng chúng không thực sự cơ bản và thay vào đó là sự phản ánh sự thiếu hiểu biết của chúng ta về một lý thuyết vật lý sâu sắc hơn.
Ví dụ, nếu tôi không biết gì về cách trọng lực hoạt động, tôi vẫn có thể đo gia tốc của các vật thể khi ở gần Trái đất. Tôi có thể gán một hằng số "cơ bản" cho con số này và đo nó là 9,8 mét trên giây bình phương. Tôi vẫn có thể dự đoán quỹ đạo của những quả bóng được ném hoàn toàn ổn với con số này trong tay.
Nhưng các quan sát cẩn thận sẽ tiết lộ rằng gia tốc này không thực sự là hằng số. Nó có thể thay đổi tùy thuộc vào độ cao hoặc thậm chí là vị trí trên Trái đất. Điều này sẽ cho tôi biết rằng có điều gì đó sâu sắc hơn đang diễn ra — trong trường hợp này, có một lực hấp dẫn phổ quát.
Các nhà vật lý và thiên văn học đã thử nhiều thí nghiệm khác nhau để tìm ra các biến thể trong các hằng số. Cuối cùng, cần phải có một lượng dữ liệu khổng lồ để tìm kiếm những thay đổi cực kỳ nhỏ. Các nhà khoa học có thể thực hiện điều này bằng cách kiểm tra một hệ thống trong thời gian rất dài hoặc nhìn sâu vào vũ trụ. Dù bằng cách nào, chúng ta cũng có thể kiểm tra xem một hằng số nào đó có thay đổi theo thời gian hay không.
Ví dụ, các nhà thiên văn học đã sử dụng các phép đo về các quasar xa xôi, vốn là nguồn phát xạ vô tuyến cực kỳ sáng từ vũ trụ sơ khai. Họ cũng đã nghiên cứu bức xạ nền vi sóng vũ trụ, đó là bức xạ phát ra khi vũ trụ nguội đi từ trạng thái plasma nóng hàng tỷ năm trước.
Nếu các hằng số như tốc độ ánh sáng, cường độ hấp dẫn hoặc thậm chí khối lượng của electron khác biệt so với trước đây, thì chúng ta sẽ có thể thấy sự thay đổi tinh tế trong diện mạo của các vật thể thiên văn đó. Nói cách khác, chúng phải trông khác so với trong một vũ trụ mà các hằng số thực sự là hằng số.
Gần nhà hơn, các nhà vật lý nghiên cứu các dao động của nguyên tử, chẳng hạn như những dao động được sử dụng trong đồng hồ nguyên tử, để tìm kiếm độ lệch so với hằng số thuần túy. Tuy nhiên, dù thế nào đi nữa, chúng ta vẫn chưa quan sát thấy bất kỳ dấu hiệu nào khác ngoài tính đồng nhất thuần túy. Và đây là những phép đo cực kỳ chính xác. Đối với nhiều hằng số, chúng tôi đã xác định độ ổn định của chúng ở mức không quá 1 phần tỷ thay đổi trong một năm.
CÂU CHUYỆN LIÊN QUAN:
— Làm sao chúng ta biết các hằng số cơ bản là hằng số? Chúng ta không biết.
— Hằng số hấp dẫn là gì?
— Các vấn đề với vật lý hiện đại
Chúng ta không bao giờ có thể chứng minh 100% rằng các hằng số thực sự là hằng số. Đó là vì luôn có một số bất định trong các phép đo của chúng ta, vì vậy sẽ luôn có chỗ cho một số biến thể có thể xảy ra, ngay cả khi nó cực kỳ nhỏ.
Nhưng hiện tại, các hằng số cơ bản của tự nhiên có vẻ là hằng số, và chúng ta không biết tại sao chúng lại có các giá trị như vậy. Chúng tôi tin tưởng mạnh mẽ rằng câu chuyện khám phá trong vật lý vẫn chưa kết thúc và vẫn còn nhiều điều cần khám phá trong những bí ẩn của vũ trụ. Nhưng hiện tại, chúng ta phải sống với những hằng số cơ bản như chúng vốn có: những con số thô không thể giải thích được.
Vật lý là mô tả toán học về tự nhiên. Chúng ta sử dụng các mô hình, phương trình và công thức để mô tả cách các hệ thống hoạt động và dự đoán cách chúng sẽ hoạt động trong tương lai. Cách tiếp cận này đã chứng minh được sự thành công to lớn, giải thích mọi thứ từ hành vi của các hạt hạ nguyên tử đến sự tiến hóa của toàn bộ vũ trụ.
Nhưng có những khía cạnh của các phương trình này thách thức sự giải thích. Bất cứ khi nào chúng ta cố gắng lấy một mô hình giả thuyết và kết nối nó với thế giới thực, chúng ta phải đưa ra các con số đặc biệt. Những con số này nắm bắt một số khía cạnh của tự nhiên nằm ngoài các phương trình của chúng ta. Ví dụ, nếu tôi muốn dự đoán chuyển động của một quả bóng được ném, tôi phải biết lực hấp dẫn mạnh đến mức nào. Nhưng không có lý thuyết nào giải thích được tại sao lực hấp dẫn lại có sức mạnh như vậy. Chúng ta chỉ có thể đo giá trị đó một cách độc lập và đưa nó vào các phương trình.
Trong nhiều thập kỷ, các nhà vật lý đã biên soạn nhiều danh sách các hằng số cơ bản quan trọng nhất. Nhìn chung, có hơn hai chục hằng số. Chúng mô tả những thứ như cường độ của bốn lực trong tự nhiên, khối lượng của các hạt cơ bản và các khía cạnh của không-thời gian, như tốc độ ánh sáng.
Chúng ta không biết những con số này đến từ đâu và tại sao chúng lại có các giá trị như vậy. Một cách để nghiên cứu chúng là tìm hiểu xem chúng có thực sự là hằng số hay không. Nếu bất kỳ con số nào trong số này thay đổi theo thời gian hoặc trong không gian, thì đó sẽ là một manh mối quan trọng. Các biến thể trong các hằng số sẽ cho chúng ta biết rằng chúng không thực sự cơ bản và thay vào đó là sự phản ánh sự thiếu hiểu biết của chúng ta về một lý thuyết vật lý sâu sắc hơn.
Ví dụ, nếu tôi không biết gì về cách trọng lực hoạt động, tôi vẫn có thể đo gia tốc của các vật thể khi ở gần Trái đất. Tôi có thể gán một hằng số "cơ bản" cho con số này và đo nó là 9,8 mét trên giây bình phương. Tôi vẫn có thể dự đoán quỹ đạo của những quả bóng được ném hoàn toàn ổn với con số này trong tay.
Nhưng các quan sát cẩn thận sẽ tiết lộ rằng gia tốc này không thực sự là hằng số. Nó có thể thay đổi tùy thuộc vào độ cao hoặc thậm chí là vị trí trên Trái đất. Điều này sẽ cho tôi biết rằng có điều gì đó sâu sắc hơn đang diễn ra — trong trường hợp này, có một lực hấp dẫn phổ quát.
Các nhà vật lý và thiên văn học đã thử nhiều thí nghiệm khác nhau để tìm ra các biến thể trong các hằng số. Cuối cùng, cần phải có một lượng dữ liệu khổng lồ để tìm kiếm những thay đổi cực kỳ nhỏ. Các nhà khoa học có thể thực hiện điều này bằng cách kiểm tra một hệ thống trong thời gian rất dài hoặc nhìn sâu vào vũ trụ. Dù bằng cách nào, chúng ta cũng có thể kiểm tra xem một hằng số nào đó có thay đổi theo thời gian hay không.
Ví dụ, các nhà thiên văn học đã sử dụng các phép đo về các quasar xa xôi, vốn là nguồn phát xạ vô tuyến cực kỳ sáng từ vũ trụ sơ khai. Họ cũng đã nghiên cứu bức xạ nền vi sóng vũ trụ, đó là bức xạ phát ra khi vũ trụ nguội đi từ trạng thái plasma nóng hàng tỷ năm trước.

Nếu các hằng số như tốc độ ánh sáng, cường độ hấp dẫn hoặc thậm chí khối lượng của electron khác biệt so với trước đây, thì chúng ta sẽ có thể thấy sự thay đổi tinh tế trong diện mạo của các vật thể thiên văn đó. Nói cách khác, chúng phải trông khác so với trong một vũ trụ mà các hằng số thực sự là hằng số.
Gần nhà hơn, các nhà vật lý nghiên cứu các dao động của nguyên tử, chẳng hạn như những dao động được sử dụng trong đồng hồ nguyên tử, để tìm kiếm độ lệch so với hằng số thuần túy. Tuy nhiên, dù thế nào đi nữa, chúng ta vẫn chưa quan sát thấy bất kỳ dấu hiệu nào khác ngoài tính đồng nhất thuần túy. Và đây là những phép đo cực kỳ chính xác. Đối với nhiều hằng số, chúng tôi đã xác định độ ổn định của chúng ở mức không quá 1 phần tỷ thay đổi trong một năm.
CÂU CHUYỆN LIÊN QUAN:
— Làm sao chúng ta biết các hằng số cơ bản là hằng số? Chúng ta không biết.
— Hằng số hấp dẫn là gì?
— Các vấn đề với vật lý hiện đại
Chúng ta không bao giờ có thể chứng minh 100% rằng các hằng số thực sự là hằng số. Đó là vì luôn có một số bất định trong các phép đo của chúng ta, vì vậy sẽ luôn có chỗ cho một số biến thể có thể xảy ra, ngay cả khi nó cực kỳ nhỏ.
Nhưng hiện tại, các hằng số cơ bản của tự nhiên có vẻ là hằng số, và chúng ta không biết tại sao chúng lại có các giá trị như vậy. Chúng tôi tin tưởng mạnh mẽ rằng câu chuyện khám phá trong vật lý vẫn chưa kết thúc và vẫn còn nhiều điều cần khám phá trong những bí ẩn của vũ trụ. Nhưng hiện tại, chúng ta phải sống với những hằng số cơ bản như chúng vốn có: những con số thô không thể giải thích được.